Extremwertprobleme mit Geogebra 5: Unterschied zwischen den Versionen

Aus Geogebra Rheinland-Pfalz
Wechseln zu: Navigation, Suche
Zeile 2: Zeile 2:
  
 
==Schachtelaufgabe==
 
==Schachtelaufgabe==
<ggb_applet width="1413" height="723"  version="5.0" ggbBase64="UEsDBBQACAgIAKxSY0IAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiu5QIAUEsHCEXM3l0aAAAAGAAAAFBLAwQUAAgICACsUmNCAAAAAAAAAAAAAAAAEgAAAGdlb2dlYnJhX3B5dGhvbi5weQMAUEsHCAAAAAACAAAAAAAAAFBLAwQUAAgICACsUmNCAAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbO2d63LbthKAf6dPgdGPnrQTyQRB8NLK6SRtbKdNYseO3U7+ZCARkhhTpMqLLXvyOOdNzoudBUBS1MWyRMsOnaiJAoEEsdgPu4sLSbX923joowsexV4Y7DZwS2sgHnRD1wv6u4006TXtxm/Pf2j3edjnnYihXhgNWbLboKJkcZ3RclpYc8Qxz91tOI5tEk1zmwTbTtMgXdp0rJ7e7JiEMsuwOenxBkLj2PslCN+xIY9HrMtPugM+ZG/CLktkpYMkGf2ys3N5ednKxbfCqL/T73da49htIGh6EO82si+/QHVTF10SWVzXNLzzz9s3qvqmF8QJC7ogX6iVes9/eNK+9AI3vESXnpsMAIJhgB4D7vUHoKhtQmZHlBqBtiPeTbwLHsO1paxUOhmOGrIYC8T5J+ob8gt9Gsj1LjyXR7sNrWXqtmHpk/8aKIw8HiRZWaxkztWhTVWiG8Sii69s7+TtaF94/FI1SHyTbTU0x4Lu82Kv4/PdRo/5MQDxgl4EnQGqRClk4+TK5x0W5flJK/Az+AMFvGsu6oJGKYK7DWLqz7BhPbM07RmlWq5FIRiXpKpaC6FZIyZSswMTsWQilBrORCgGYeJjwke2Zkao0UBJGPqyUg1RB335gnRN19AzkWCV6JCYpjqlqWMaUYmuEkMlVJUx1OWGKmqoMoYqY5AlcG/XswSXlOHepqd+N7ikEErxvFCdLhZql+BiQe4LwgKZTAgSsLCEJhIjy5oqa8kEayrB2Ulb/CM7ybwjRlIJIzaJbWyqA+lNks2Fku8mNheKaUko9Jv8Kz9zIom+jsi5QFBBormM7a2Rp4JAS5vy/9z5VYqzdBmG+2gUxfpsqzCi4D4UYUeEIgv+sYQb6QjDMVtkIWcgIssKD6IUilMNCc9BpvQYCs5EZR4EwEcWpoTARwQqSgz4iFopaE4VBWLCGWIjA2pARDqwJS+DECf+YmTIK7R14suNjKhGljJq7+TjVTvDg+KBKJtJTPgwFsCIIyN5Rk3iytBNqBkUsoDOpJIeyQHaSJQDODJeU8HWkLHIBGTIFActFZSQBCYIQ1w3EFgKkiMF0NOJ7AJE4SIhHQuxwNKY4KRijLAEUQLXQR6E6wIxIYqybiJTR5YYZ7Ahhh/TFm2HSnVkasgUlxZdAFLhChsRoQ1EilEYewXcAfdHRTdIjl4wSpMpdt2hm39NwpnSbtg9fznDmrM4yb9DIZhSTKY8aooxNSN60vZZh/swczwRZoDQBfMhwDRk/b0wSFDuJro61o/YaOB14xOeJHBVjD6zC/aGJXy8B6XjvIFStJyptXna9T3XY8EZ2IioQlSI8ombnBTk8zZLyyR3wzByT65iMBw0/sijEAZKbLYINWxqaroNYzeBQexKnSIWaWEL5mZQmeNYGGqMu0xYvK61bGJbuuNoumERDaBfLT6l5PKLQi825nEOsh8J98/Qi8zr+GXoTw6NQi9IfmejJI3kHBy8JRIavQj6Ppdg5UAPk9nueSccnyiiRNX14WrExSRRNqDT/z30wwiBN+oUpon9LO2oVJYRLStKabKMJktoeRd5bnEeO7osIdOOSmUp6HPVtExTnKuJtVyMF8uwB5WXLUwajJgZp4GXvMkzidc9zzTFqvy7dNgBW8sum64Sb6jK9s6MdbXPeRRwX9lQAD2ZhmmsjLowzCftNOZHLBm8CNxj3gdvPGIiIiZQtSo6abHLu94QLlTHM3RMdOspNFUddXk/4rmGvlzzKLDyrFa26LnDsqq9KBy+Di4+gM3MNLW9k+vTjruRNxKmiToQoc/5xPpcL2YQ393ydVNYyB83+FSTgt9YVCcWtmBVYpi48KmmAcsdi1qUmLAsNAkBI7wuTkFhy4DVENUoOJ9d+Bs2WpZpa8SxYFCzbA0uGksngFO2WGleZ7mmqbdWs7PxzVahVTW0qzvVqS+s87pKnSMfIme5tsKB5w6uEhmgz0cjYSJg4MUUqNTULJRnsqPwsxgHwgAlkxA041HCdIQnxVBBVtZLhE4NxNJkEEZyiQxKQCrMzudDWNZmFQbpkEdet0DE5FobLDzNnSC3AdFIFHZEe2awTgDA6RuiHmL+aMBEdZlqPrvi0ZSfydrehm4mOCsX+2JVjoaeWqUP2RgGJKiuE4d+mvCTLvh1MNncUA3Ldxw00Xo0lotp8e1K7DuILz1vzItBGxB51xCJpsPKJPgmMJiew6I/lnaVd4T8cuC5Lg+KxrIAIpHsAnDhkdIWwVDOlZkXl4JNXclRqBRFsn6Z6yE5cBWsXzTm+iJfr6zaGdIki+7QVuwObbGGC/TDi/TLYlssOiPvCpleq90xZe5CVTHyTk1x1NGZsLwqr5ffAC+sPyCw378BYLmB4YcA9sc3AKywsM0RG48iiJiiWRmGV7DwGUP7nrJniP3UmGa5cwvkV9Ugm7akLJKOSqpSvsfoNUdqLycFS98mqoJrrz64Nh+85njtlywLawLZurz268Nr87FrjtfBrH1Vg3ZQH2gPEb9el6xMW5fV6/qwuv/49eesfa2N68/64HqA+PXXhFeFWP/Xd8XqTZlVtbj1pobA7jFuvZ2P9usSe/t9EXs3NZ9YF9a7+sB6gLnEUc5Kq+qOR98Vr/clXmujel8/VPdH6ri8XlwdFnEbkxpqi0uml7dgW87nZG6VWAnSSX0gzU0fNkDpw+K1TiVUH2qICm+Q1T9z6+hKmP6pD6a5gH5nSgiUyTD1nrKf0C5SlqWjn4EV/PNUkiuyrDEPrJcG8j5NAaQ3T2zqBsvUnl3gemq3D4ofZqXDeZyYEslTPHM2cwdm8xuMC29pVLmFUkbfDYdDFrgokE/C/MEj74KJRyIkLPUUBtMEPKV7mhRHfmSjMP5V1ZfVskIn/OeuvRAt3+W9QxdsEuRR6F/1Qe9pijAvYVhu0jJd7nUwIhfyzJD7kYzKZSoz5QqMWXITidlydcEcOWVmWJNbcQxjMamb7ZR3PLlWMv5VMriS4SkZn5WM3iespJwrKb6SMlBShpmUIJPSFylUNVre1aNM42KGLppSDeud7CNey0uX3yc97PVinogYp1syxDUterMF3XwvI+Z9kSuU+Pe24F3S8n7CzfJJU0V3kKboiwD1OhDPkKib6vNPnZxzPhIP+xwGHyIWxOKp/OnHTVYnybckN0TSqyFJNQF7dCg/1xDl4zRKMVJtWW6G5XmNSDbx3NaG/rho+jWi+bjtcrAluSGSwxqSbBZj+GPz8KCGNB+nXfa3JDdEclQjknNDeN1QzuzIRF48nNmPeaX2SvbUXsmB2ivZV3slx3ObKx1V+lCVPlWlz7LdG/9//+0O+Ku9g321x1IcODxWey3Zgb2D00O165Id2D84PVP7L/kl+2fHaicmO3B4fHaa7cn8xQDPq71sZ0bm9g6y/RmZ25c5kpeUO0VGnhPVYppfJ5qBzSx3ICVYeS2iRdjOclID7OQ5UVLP2yLbrudtOT67fY9owN2otE3U+Rp7RBcb3CNaeRNodgf/sD47+Bu4J7RU1dMaqnqHuxVLdT2rj64buDGzaIu3pGw57H0FP06+jh/fSOHweDMU7jqm37emchD7LjSVo/N3oamcdnwXmsr51LekabZKKGmazxMfdJ5077dbH27BNYtyb8Fj+FuUlVDub1FuCuWrBW/UbFFWQ7ngMcYtymqxcsHCdouyEsqDBQvnLcpqw86CdfkWZSWUh9tYuTGUWwffFMrTrYNvCuXxFuXat5eOwzCZfWZ68oT01H2kv9V9pI+qwpvvlZRfSvq7PrvKuGVjzTKojnViO46j0wf72ZSP9aFAW1TXqW1jXXMMQgxtwxTm3wEUD20Xb46I1yLWfgdw0cN0N/zG1GK3dh+G7f2/9nb0SS/DVI5aCan+uJCqh3A2AbVy+Hsh3z6AAPjyE14nBL64s/l2v/kA+fKxMLrv8DnFqBOGPmeTZw66sz+/V5oCbOoH+JaTKb1Y4kjFdeIsBcdGsqfksXep78cJ930eoKm3sFbV362h/hivrP9RGpwnHLG0h/bFj/DyYD31w/qpL357e1X1P3rc7wkE4r26tRSP6qS4rRS3rJUVf9HxuZekQR+J36qsjiGuEwb1XplJVvd+8V7dWvomNdKXqGmIs7q370dp4PbUndvbJ3Yf+DjJ58k//puGya9naFd9QT/LWfOiSV0CVzWmq7jjAjjdFLo5OHHCouRIDIBIALVaFjUdalHbMC1iG7qpHrs2WoTaRDN0mIVYNrFxeVxd3XbSGtlOPlSYxsrGcxb66XDd8eGiRjpn/oLx6mHyfcogPs6qvFP+7WKRz/+vRM//D1BLBwjQbWFWlgwAAEZpAABQSwECFAAUAAgICACsUmNCRczeXRoAAAAYAAAAFgAAAAAAAAAAAAAAAAAAAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc1BLAQIUABQACAgIAKxSY0IAAAAAAgAAAAAAAAASAAAAAAAAAAAAAAAAAF4AAABnZW9nZWJyYV9weXRob24ucHlQSwECFAAUAAgICACsUmNC0G1hVpYMAABGaQAADAAAAAAAAAAAAAAAAACgAAAAZ2VvZ2VicmEueG1sUEsFBgAAAAADAAMAvgAAAHANAAAAAA==" showResetIcon = "false" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "true" />
+
<ggb_applet width="1413" height="723"  version="5.0" ggbBase64="UEsDBBQACAgIAKxSY0IAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiu5QIAUEsHCEXM3l0aAAAAGAAAAFBLAwQUAAgICACsUmNCAAAAAAAAAAAAAAAAEgAAAGdlb2dlYnJhX3B5dGhvbi5weQMAUEsHCAAAAAACAAAAAAAAAFBLAwQUAAgICACsUmNCAAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbO2d63LbthKAf6dPgdGPnrQTyQRB8NLK6SRtbKdNYseO3U7+ZCARkhhTpMqLLXvyOOdNzoudBUBS1MWyRMsOnaiJAoEEsdgPu4sLSbX923joowsexV4Y7DZwS2sgHnRD1wv6u4006TXtxm/Pf2j3edjnnYihXhgNWbLboKJkcZ3RclpYc8Qxz91tOI5tEk1zmwTbTtMgXdp0rJ7e7JiEMsuwOenxBkLj2PslCN+xIY9HrMtPugM+ZG/CLktkpYMkGf2ys3N5ednKxbfCqL/T73da49htIGh6EO82si+/QHVTF10SWVzXNLzzz9s3qvqmF8QJC7ogX6iVes9/eNK+9AI3vESXnpsMAIJhgB4D7vUHoKhtQmZHlBqBtiPeTbwLHsO1paxUOhmOGrIYC8T5J+ob8gt9Gsj1LjyXR7sNrWXqtmHpk/8aKIw8HiRZWaxkztWhTVWiG8Sii69s7+TtaF94/FI1SHyTbTU0x4Lu82Kv4/PdRo/5MQDxgl4EnQGqRClk4+TK5x0W5flJK/Az+AMFvGsu6oJGKYK7DWLqz7BhPbM07RmlWq5FIRiXpKpaC6FZIyZSswMTsWQilBrORCgGYeJjwke2Zkao0UBJGPqyUg1RB335gnRN19AzkWCV6JCYpjqlqWMaUYmuEkMlVJUx1OWGKmqoMoYqY5AlcG/XswSXlOHepqd+N7ikEErxvFCdLhZql+BiQe4LwgKZTAgSsLCEJhIjy5oqa8kEayrB2Ulb/CM7ybwjRlIJIzaJbWyqA+lNks2Fku8mNheKaUko9Jv8Kz9zIom+jsi5QFBBormM7a2Rp4JAS5vy/9z5VYqzdBmG+2gUxfpsqzCi4D4UYUeEIgv+sYQb6QjDMVtkIWcgIssKD6IUilMNCc9BpvQYCs5EZR4EwEcWpoTARwQqSgz4iFopaE4VBWLCGWIjA2pARDqwJS+DECf+YmTIK7R14suNjKhGljJq7+TjVTvDg+KBKJtJTPgwFsCIIyN5Rk3iytBNqBkUsoDOpJIeyQHaSJQDODJeU8HWkLHIBGTIFActFZSQBCYIQ1w3EFgKkiMF0NOJ7AJE4SIhHQuxwNKY4KRijLAEUQLXQR6E6wIxIYqybiJTR5YYZ7Ahhh/TFm2HSnVkasgUlxZdAFLhChsRoQ1EilEYewXcAfdHRTdIjl4wSpMpdt2hm39NwpnSbtg9fznDmrM4yb9DIZhSTKY8aooxNSN60vZZh/swczwRZoDQBfMhwDRk/b0wSFDuJro61o/YaOB14xOeJHBVjD6zC/aGJXy8B6XjvIFStJyptXna9T3XY8EZ2IioQlSI8ombnBTk8zZLyyR3wzByT65iMBw0/sijEAZKbLYINWxqaroNYzeBQexKnSIWaWEL5mZQmeNYGGqMu0xYvK61bGJbuuNoumERDaBfLT6l5PKLQi825nEOsh8J98/Qi8zr+GXoTw6NQi9IfmejJI3kHBy8JRIavQj6Ppdg5UAPk9nueSccnyiiRNX14WrExSRRNqDT/z30wwiBN+oUpon9LO2oVJYRLStKabKMJktoeRd5bnEeO7osIdOOSmUp6HPVtExTnKuJtVyMF8uwB5WXLUwajJgZp4GXvMkzidc9zzTFqvy7dNgBW8sum64Sb6jK9s6MdbXPeRRwX9lQAD2ZhmmsjLowzCftNOZHLBm8CNxj3gdvPGIiIiZQtSo6abHLu94QLlTHM3RMdOspNFUddXk/4rmGvlzzKLDyrFa26LnDsqq9KBy+Di4+gM3MNLW9k+vTjruRNxKmiToQoc/5xPpcL2YQ393ydVNYyB83+FSTgt9YVCcWtmBVYpi48KmmAcsdi1qUmLAsNAkBI7wuTkFhy4DVENUoOJ9d+Bs2WpZpa8SxYFCzbA0uGksngFO2WGleZ7mmqbdWs7PxzVahVTW0qzvVqS+s87pKnSMfIme5tsKB5w6uEhmgz0cjYSJg4MUUqNTULJRnsqPwsxgHwgAlkxA041HCdIQnxVBBVtZLhE4NxNJkEEZyiQxKQCrMzudDWNZmFQbpkEdet0DE5FobLDzNnSC3AdFIFHZEe2awTgDA6RuiHmL+aMBEdZlqPrvi0ZSfydrehm4mOCsX+2JVjoaeWqUP2RgGJKiuE4d+mvCTLvh1MNncUA3Ldxw00Xo0lotp8e1K7DuILz1vzItBGxB51xCJpsPKJPgmMJiew6I/lnaVd4T8cuC5Lg+KxrIAIpHsAnDhkdIWwVDOlZkXl4JNXclRqBRFsn6Z6yE5cBWsXzTm+iJfr6zaGdIki+7QVuwObbGGC
 +
/TDi/TLYlssOiPvCpleq90xZe5CVTHyTk1x1NGZsLwqr5ffAC+sPyCw378BYLmB4YcA9sc3AKywsM0RG48iiJiiWRmGV7DwGUP7nrJniP3UmGa5cwvkV9Ugm7akLJKOSqpSvsfoNUdqLycFS98mqoJrrz64Nh+85njtlywLawLZurz268Nr87FrjtfBrH1Vg3ZQH2gPEb9el6xMW5fV6/qwuv/49eesfa2N68/64HqA+PXXhFeFWP/Xd8XqTZlVtbj1pobA7jFuvZ2P9usSe/t9EXs3NZ9YF9a7+sB6gLnEUc5Kq+qOR98Vr/clXmujel8/VPdH6ri8XlwdFnEbkxpqi0uml7dgW87nZG6VWAnSSX0gzU0fNkDpw+K1TiVUH2qICm+Q1T9z6+hKmP6pD6a5gH5nSgiUyTD1nrKf0C5SlqWjn4EV/PNUkiuyrDEPrJcG8j5NAaQ3T2zqBsvUnl3gemq3D4ofZqXDeZyYEslTPHM2cwdm8xuMC29pVLmFUkbfDYdDFrgokE/C/MEj74KJRyIkLPUUBtMEPKV7mhRHfmSjMP5V1ZfVskIn/OeuvRAt3+W9QxdsEuRR6F/1Qe9pijAvYVhu0jJd7nUwIhfyzJD7kYzKZSoz5QqMWXITidlydcEcOWVmWJNbcQxjMamb7ZR3PLlWMv5VMriS4SkZn5WM3iespJwrKb6SMlBShpmUIJPSFylUNVre1aNM42KGLppSDeud7CNey0uX3yc97PVinogYp1syxDUterMF3XwvI+Z9kSuU+Pe24F3S8n7CzfJJU0V3kKboiwD1OhDPkKib6vNPnZxzPhIP+xwGHyIWxOKp/OnHTVYnybckN0TSqyFJNQF7dCg/1xDl4zRKMVJtWW6G5XmNSDbx3NaG/rho+jWi+bjtcrAluSGSwxqSbBZj+GPz8KCGNB+nXfa3JDdEclQjknNDeN1QzuzIRF48nNmPeaX2SvbUXsmB2ivZV3slx3ObKx1V+lCVPlWlz7LdG/9//+0O+Ku9g321x1IcODxWey3Zgb2D00O165Id2D84PVP7L/kl+2fHaicmO3B4fHaa7cn8xQDPq71sZ0bm9g6y/RmZ25c5kpeUO0VGnhPVYppfJ5qBzSx3ICVYeS2iRdjOclID7OQ5UVLP2yLbrudtOT67fY9owN2otE3U+Rp7RBcb3CNaeRNodgf/sD47+Bu4J7RU1dMaqnqHuxVLdT2rj64buDGzaIu3pGw57H0FP06+jh/fSOHweDMU7jqm37emchD7LjSVo/N3oamcdnwXmsr51LekabZKKGmazxMfdJ5077dbH27BNYtyb8Fj+FuUlVDub1FuCuWrBW/UbFFWQ7ngMcYtymqxcsHCdouyEsqDBQvnLcpqw86CdfkWZSWUh9tYuTGUWwffFMrTrYNvCuXxFuXat5eOwzCZfWZ68oT01H2kv9V9pI+qwpvvlZRfSvq7PrvKuGVjzTKojnViO46j0wf72ZSP9aFAW1TXqW1jXXMMQgxtwxTm3wEUD20Xb46I1yLWfgdw0cN0N/zG1GK3dh+G7f2/9nb0SS/DVI5aCan+uJCqh3A2AbVy+Hsh3z6AAPjyE14nBL64s/l2v/kA+fKxMLrv8DnFqBOGPmeTZw66sz+/V5oCbOoH+JaTKb1Y4kjFdeIsBcdGsqfksXep78cJ930eoKm3sFbV362h/hivrP9RGpwnHLG0h/bFj/DyYD31w/qpL357e1X1P3rc7wkE4r26tRSP6qS4rRS3rJUVf9HxuZekQR+J36qsjiGuEwb1XplJVvd+8V7dWvomNdKXqGmIs7q370dp4PbUndvbJ3Yf+DjJ58k//puGya9naFd9QT/LWfOiSV0CVzWmq7jjAjjdFLo5OHHCouRIDIBIALVaFjUdalHbMC1iG7qpHrs2WoTaRDN0mIVYNrFxeVxd3XbSGtlOPlSYxsrGcxb66XDd8eGiRjpn/oLx6mHyfcogPs6qvFP+7WKRz/+vRM//D1BLBwjQbWFWlgwAAEZpAABQSwECFAAUAAgICACsUmNCRczeXRoAAAAYAAAAFgAAAAAAAAAAAAAAAAAAAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc1BLAQIUABQACAgIAKxSY0IAAAAAAgAAAAAAAAASAAAAAAAAAAAAAAAAAF4AAABnZW9nZWJyYV9weXRob24ucHlQSwECFAAUAAgICACsUmNC0G1hVpYMAABGaQAADAAAAAAAAAAAAAAAAACgAAAAZ2VvZ2VicmEueG1sUEsFBgAAAAADAAMAvgAAAHANAAAAAA==" showResetIcon = "false" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "true" />
 +
 
 +
==Zylinder in Kugel==
 +
<ggb_applet width="1413" height="723"  version="5.0" ggbBase64="UEsDBBQACAgIAA5TY0IAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiu5QIAUEsHCEXM3l0aAAAAGAAAAFBLAwQUAAgICAAOU2NCAAAAAAAAAAAAAAAAEgAAAGdlb2dlYnJhX3B5dGhvbi5weQMAUEsHCAAAAAACAAAAAAAAAFBLAwQUAAgICAAOU2NCAAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbO1bW3PbuBV+zv4KDB/apGPJAEmQVCrvjuKdnWaaTbJ2munkoTMQCVGIKZIhKVvy5KH/sH+pBxdeJNmyJDupdqeOZfByiHPOd64AleFPi1mCrnlRiiw9s0gfW4inYRaJND6z5tWkF1g//fjDMOZZzMcFQ5OsmLHqzKKSsnnO7Q/6BA/kNRGdWeOJE/hsgHuBSyc9NwomPUZC3gs8MvAiP/K5zyyEFqV4mWZv2YyXOQv5ZTjlM/YmC1mlJp1WVf7y9PTm5qZfs+9nRXwax+P+oowsBKKn5ZllDl7CdCsP3TiK3MaYnP7z1zd6+p5Iy4qlIbeQVGsufvzh2fBGpFF2g25EVE0BBNcFPaZcxFNQNPDg5FRS5aBtzsNKXPMSnu2cKqWrWW4pMpbK+8/0EUoafSwUiWsR8eLMwn3PsT0naH4GFsoKwdPK0BLNc2MOvDIJ8TF5eJLhaS3S8FrwGy2bPFJiu3jggyVFKcYJP7MmLCkBG5FOCrALaFXM4bSslgkfs6I+bwUiJ/APCMQtl3OBfBrMM8vx7BPi+ic+xieU4lqhhjHpcNWzNkyNEC1Xc6Fl67RMPY+0TAkwkx8PPkqaNaauhaosS9SkGNEB+voV2djG6EQORA82DJ6nb2F9DTt6sPXg6oFqGlc/7mpSV9O4msZ1toD7sJ4dcJ0uuA/paT8OXKdmart0k6lN72YadMAlErmviEjI1OAgCRZRoMnBNaeePvXVQLAeiLkZyD/KSN4jYXQOgpFAjLpPZUB6H2fvTs6PY1szJbTDFOymftVng6Vj78NyIxEcwNHbhu2DmecAhj5eif86+PVIzLgNhm8hFCX2ulQEUQgfishApiIf/vgyjGxE4FogT+HMRY6ilRFEKZBTjGTkIE9FDIVgouocGMBHEVPHgY9MVNRx4SNnpaA51Sg4HtxxAuTCDMhRAeyrxyDFyV+CXPUEflR+aeuFLD1bQBqe1gVraPBB5VTSGpYVn5USMWegUrmBTeFlsGthcymcAnYeVfA5NYIBknSAjkrYVILrqmTkAWbIkxd9nZWQQkxCDIndReAqSJUKgM92lA0QhYckdyLZAphuiyeVRcKXkDrwHJwDc1ti7DgaZttDno18WWiIK+uPF0jZYVIbeRh58tHGBsAVngiQI7WBVJFnpWjAnfIkb2BXOIo0n1cr2IWzqD6ssjXqKAuvXq1hzVlZ1cdABD1F2/7oHmOlO3o2TNiYJ9BFXko/QOiaJZBhLDX/JEsrVMeJra/FBcunIiwveVXBUyX6zK7ZG1bxxS9AXdYCKtaqaxvyeZiISLD0I/iInEJOiOomTnUFdQ/nY8M5zLIiulyW4Dho8YkXGVQ4GvSDAFPftqnrBwGAudR3qGxooRi5nkP9ge1Ce1WGTHq8a/f9wA6gOkDcua4HhW95zy2fas78utGMLXhZQxkXMgMY8OXJ6/JVlrSX8kyk1TnLq3mhOnIoY4XUaZTGCVfQqloPrW14Nc4WlxpTR8/1YZlz2TIqAcbxeZZkBSqkylDUYzOO9ahopGQNFVY0WFHg2kgiau6Tga0o1DjWo6ICq2vRjKakVpPgmo0oVeaDybs+plxG9snzVFRv6pNKhFdGU6Lp385nY/A289jqlOSJphyervnX8IoXKU+0F6VgyXk2L7VbN675bDgv+XtWTUdpdMFjiMf3TCbFCqbWpK3EEQ/FDB7U1w10TJr1HyCqvhrxuOC1holaAWlg1V3c9emNy2qqX4ps9jq9/gA+sybq8LTWZ1iGhcila6Ix5Ogr3npfJEoGKT7qPrcCi/PzPVGF5VJw2Tm+1cc90qdNGFF1Z6F8GSBwFJ056xFq93fzl8X91sWHOszyUXPad855e8iceQI5sDtbE4gbF3eJcLBdnktTg6M23UxHVJOUDe8i+ywzepaiqk0la5EhXUBGRAkTGFpRSZ0sxObVNCvUwheUgFG6T8JnsEI1E6bzGS9E2EB0oVbQ4Klz48x2P9CySCFRNpbyrMHaAgC378leiCX5lKkls8lRbMmLlXhRs72bTEpeoYVaKC7BC+3OzV+zyEhlJikTuRBHM6EX5jO2UDkOsXGZJfOKX4YQvWm7oaHFrncZsPZ+YOWozZSlbBqlz6OJWPCmOgOC4hYSzmr2aHNsBVXzCpb3pXK72k7q4G8iinjaiMtSSDjKQhCpuQYDQc3mOgqaR8HllqrYdJKFMZsy9WzG0gilqtl7ncrcBkax2jaDYYjJEcQCIEEglNShNtC8qglGel4z24ZjqLrXmHhkbbhA3VRu8wFZl2M9jPXQuAHe6gatpbs5tpTGwsZUPZ3V9JaZjhYpsizAK72OvrqWnbt4bg+IYj0gSN/5ngGxk89f7O/y1DU42pgcvcvzRV4ANzmNgTiGhngB85Vfiur5xb+e2y9QDxVyfKHb4+1WjTfTnOsPBmTgUIfavusG7p4G3C7ueyPu8+IExS+s1RjbFHc1+N4fT/BJ51dOswnXk4TiBnC/1cD1DkHut+NBrvfdobvsQtfbG7vLI8Su993A+9AJ2P2x+3A82H1r6Fa7kfdZsoyzdK0XudR9CGDKbJULmSNjc70jgWY2gVU00dSlpq40dQ6De2Z9eahp0exrmJsZDy1f99f4zpITeu9I6BoH5O8M9edN+xLqKANTcnAT8ED3UvJYnjVSlg85YkeNHSV9dONm9z3leV7fdX1/gB0yID5xPO/wLgOcKJHtQ9MMgzE2twauOM/ljsy79EPB0lK+SF3dE9gd1+qIcO25/QEdBE7gYx9TN5Bbust60f/7hjk/IpibdccfwX+/HBGwv2f3Xa1+l/mUF3yt+I10ObvYKHdsey37MmdRd8nCNk22X0G62jRnvUu1uaax97Hm/YicL8FQsFxdw+Q5PkHYNFYSHHOuTm255l7HaqzpIn2f655gshOAiZiJikcNTuPH4phsXxna2O3gSJ+mroMkInRaJaLjVeKw2OQi5uk1iJYVJUILbL4JtcR1JqivLEi99bMk5tIt6bSxM1YVYoFGNf2ophrZaiHhDXD3B8QaOYbHyK0PaCeh8S+pVqbUO8ViliciFNWhuu5uZP5/I//xjGyyUs6KthpPjtfQ21fJH80q+ePz4gU6Q//5N/qL3oSD0YbPjrtzk3mqinG7bnssILPdd+/27Fse5wur1fFnXohrJl/Yr9XHj5tr4z+xPCv/ur3ibeL458cCmd7RNEhvaqAkMrqOAcyLLKvKdRwNaqp5wLp58DawfaXvnz+0t9Dd4Xl1PDs89cLk27wPWVX7/HjUfsveKrXVeKvHp90DDE12Wzw/f4FO0cUuLxbC9RcLjVg756It3bQowmTn9cV0uz+rbqORe/rYRCGOKON+t07D7wfOoPuz1mj0Hu405Fe2xAQssTUKx1mWcNYmdrHuZm3cPdVrye1Wat/T23q97jlbw5blymPUtb8XXL+P3l3fz+v6dvzxf6QwIXRnjT+ZZXAZTlNRVfvpfnVMugdK98H2HL1i7HnMk/0Unh2TwsbY/u4afxI8gU7sSnVieymeHpHiTv3tgLu/gHOX4qNxwkU1T2Mkv6BwOAzJEcFgU21/dw/713tea0qfdr+jpb5Fa/5P1Y//BVBLBwi3WQJPhgoAAAQ2AABQSwECFAAUAAgICAAOU2NCRczeXRoAAAAYAAAAFgAAAAAAAAAAAAAAAAAAAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc1BLAQIUABQACAgIAA5TY0IAAAAAAgAAAAAAAAASAAAAAAAAAAAAAAAAAF4AAABnZW9nZWJyYV9weXRob24ucHlQSwECFAAUAAgICAAOU2NCt1kCT4YKAAAENgAADAAAAAAAAAAAAAAAAACgAAAAZ2VvZ2VicmEueG1sUEsFBgAAAAADAAMAvgAAAGALAAAAAA==" showResetIcon = "false" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "true" />

Version vom 3. März 2013, 11:24 Uhr

Anhand zweier klassischer Extremwertprobleme aus der Analysis werden zunächst didaktische Einsatzmöglichkeiten von Geogebra und deren Mehrwert dargestellt. Im Anschluss werden Dateien von den Teilnehmern selbst erstellt. Grundkenntnisse in Geogebra werden vorausgesetzt.

Schachtelaufgabe

Zylinder in Kugel